skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gahlot, Abhinav Prakash"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geologic carbon storage represents one of the few truly scalable technologies capable of reducing the CO 2 concentration in the atmosphere. While this technology has the potential to scale, its success hinges on our ability to mitigate its risks. An important aspect of risk mitigation concerns assurances that the injected CO 2 remains within the storage complex. Among the different monitoring modalities, seismic imaging stands out due to its ability to attain high-resolution and high-fidelity images. However, these superior features come at prohibitive costs and time-intensive efforts that potentially render extensive seismic monitoring undesirable. To overcome this shortcoming, we present a methodology in which time-lapse images are created by inverting nonreplicated time-lapse monitoring data jointly. By no longer insisting on replication of the surveys to obtain high-fidelity time-lapse images and differences, extreme costs and time-consuming labor are averted. To demonstrate our approach, hundreds of realistic synthetic noisy time-lapse seismic data sets are simulated that contain imprints of regular CO 2 plumes and irregular plumes that leak. These time-lapse data sets are subsequently inverted to produce time-lapse difference images that are used to train a deep neural classifier. The testing results show that the classifier is capable of detecting CO 2 leakage automatically on unseen data with reasonable accuracy. We consider the use of this classifier as a first step in the development of an automatic workflow designed to handle the large number of continuously monitored CO 2 injection sites needed to help combat climate change. 
    more » « less